Vector Valued multiple of $chi^{2}$ over $p$-metric sequence spaces defined by Musielak

نویسندگان

  • Deepamala - Mathematics Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, P.O.: Khamaria, Jabalpur 482 005, Madhya Pradesh, India. , email: [email protected]
  • Lakshmi Mishra Dept. of Math., Lovely Prof. Univ. Jalandhar-Delhi G.T. Road, Phagwara, Punjab 144 411, India, L.1627 Awadh Puri Colony Beniganj, Phase-III, Opposite-Industrial Training Institute (I.T.I.), Ayodhya Main Road Faizabad 224 001,
  • Vandana - Department of Management Studies, Indian Institute of Technology, Madras, Chennai 600 036, Tamil Nadu, India. email: [email protected]
چکیده مقاله:

In this article, we define the vector valued multiple of $chi^{2}$ over $p$-metric sequence spaces defined by Musielak and study some of their topological properties and some inclusion results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Vector-Valued Sequence Spaces Defined by Modulus Functions

We introduce the vector-valued sequence spaces w∞ Δ, F,Q, p, u , w1 Δ, F,Q, p, u , and w0 Δ, F,Q, p, u , S q u and S q 0u, using a sequence of modulus functions and the multiplier sequence u uk of nonzero complex numbers. We give some relations related to these sequence spaces. It is also shown that if a sequence is strongly Δuq-Cesàro summable with respect to the modulus function f then it is ...

متن کامل

Some New Lacunary Strong Convergent Vector-valued Multiplier Difference Sequence Spaces Defined by a Musielak-orlicz Function

In the present paper we introduce some vector-valued multiplier difference sequence spaces defined by a Musielak-Orlicz function, concepts of lacunary convergence and strong (A, u)-convergence, where A = (aik) is an infinite matrix of complex numbers and u = (ui) be any sequence of strictly positive real numbers. We also make an effort to study some topological properties and some inclusion rel...

متن کامل

Generalized I of strongly Lacunary of χ 2 over p − metric spaces defined by Musielak Orlicz function

In this paper, we introduce generalized difference sequence spaces via ideal convergence, lacunary of χ sequence spaces over p−metric spaces defined by Musielak function, and examine the Musielak-Orlicz function which satisfies uniform ∆2 condition, and we also discuss some topological properties of the resulting spaces of χ with respect to ideal structures which is solid and monotone. Hence, g...

متن کامل

Some Vector Valued Multiplier Difference Sequence Spaces Defined by a Sequence of Orlicz Functions

In this article we introduce some new difference sequence spaces with a real 2-normed linear space as base space and which are defined using a sequence of Orlicz functions, a bounded sequence of positive real numbers and a sequence of non-zero reals as multiplier sequence. We show that these spaces are complete paranormed spaces when the base space is a 2-Banach space and investigate these spac...

متن کامل

SOME MULTIPLIER SEQUENCE SPACES DEFINED BY A MUSIELAK-ORLICZ FUNCTION IN n-NORMED SPACES

In the present paper we introduced some multiplier sequence spaces defined by a Musielak-Orlicz function M = (Mk) in n-normed spaces and examine some topological properties and some inclusion relation between the resulting sequence spaces.

متن کامل

some new double sequence spaces in 2-normed spaces defined by two valued measure

in this paper, following the methods of connor, we introduce some new generalized double difference sequencespaces using summability with respect to a two valued measure, double infinite matrix and an orlicz function in 2-normed spaces which have unique non-linear structure and examine some of their properties.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 2

صفحات  87- 98

تاریخ انتشار 2017-07-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023